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Abstract—Rough surface has been produced by simulation in 1+1 dimension following different competitive 

growth models namely random deposition with ballistic deposition and random deposition with surface 

relaxation with ballistic deposition and calculated the corresponding scaling exponent. It is seen that though 

the nature of the interface evolution follows the well-established Edwards-Wilkinson growth model or 

Kardar–Parisi–Zhang model but the values of corresponding scaling exponents do not match exactly with 

the existing literature. Further it has been seen that the system does not switch over from growth region to 

saturation region suddenly after a single critical time as has been suggested by the existing theories but there 

are two distinct crossover regions where the system shows different scaling property.  

This theoretical finding has been coupled with existing Cassie-Baxter equation to relate the evolved 

roughness with hydrophobic response of the surface. In this regard, quantitative expression of the water 

contact angle based on simple assumptions has been represented.  
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I.  INTRODUCTION 

In the last few decades, considerable efforts have been put for detail understanding of different growth models 

that results rough surfaces by different specific ways [1, 2]. Also with development of different microscopic 

techniques namely atomic force microscopy people now, are trying to create a link between the experimental results 

and theoretical studies. Basically there are two kinds of approaches for studying these kinds of growths in d 

dimensional spaces; one approach includes discrete growth models that are developed by setting of certain 

deposition obeying either nearest neighbour interaction or next nearest neighbour interaction or others. It is seen 

that those specific rules can adequately describe the temporal and spatial evolution of the growing surfaces. The 

entire concept of this discrete model can be best designated by the most well-known Family-Vicsek 

phenomenological scaling law [3].There are numbers of different discrete models falling different universality class 

that people use to describe spatial and temporal evolution of a growing rough surface. Some examples are random 

deposition (RD), random deposition with surface relaxation (RDSR), solid on solid model (SOS), body centred 

solid on solid model (BCSOS), ballistic deposition (BD) [4-6] and many others. Also as the main aim of all these 

models are to best describe different natural phenomena people are developing models called competitive growth 

where it is considered that a definite growth is taking place with a specific probabilities say p whereas the other 

with probability (1-p) [7, 8]. Thus a more realistic surface can be obtained here.  
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In the second approach different continuum equation is proposed that may be both linear and nonlinear class. 

For example Edwards-Wilkinson model (ED) or model suggested by Kardar–Parisi–Zhang (KPZ).  

As has been previously mentioned different discrete growth model are defined by different deposition rules so it 

is very obvious that there should exist some definite equations called scaling equation that describe the system. 

These scaling equations may fall within KPZ universality class or ED class or something others. So it is itself a 

challenging task to recognize a certain growth profiles in which class it is belonging to. This can be done by 

calculating different exponents of the corresponding equation called scaling exponent.  

 

There are numbers of works that have been done regarding the determination of scaling exponent of different 

universality classes and nature of surface or roughness evolution. These works include both1+1 or 2+1 dimension 

with like particles or particles with different shapes and sizes obeying certain growth mechanism or some 

competitive growth models [9]. Even after all these reports, so far the author is concern there are not much efforts 

to build a bridge between these kind of theoretical simulation with some definite properties of the system. The 

properties include electrical transport, propagation of cracks through the media porosity and many others. 

Motivated by above mentioned literature study, here two kinds of competitive growth model RD-BD (model 1) and 

RDSR-BD (model 2) have been simulated in 1+1 dimension considering a single type particles. The corresponding 

scaling exponent has been calculated and tabulated for different system sizes. Also the porosity of the produced 

surface has been calculated and Cassie-Baxter equation has been utilized in order to have quantitative ideas about 

the contact angle of water on this surface. Though the calculation is not adequately giving the exact values of water 

contact angle but it surely gives the variation of water contact angle with the fractional change of the deposition 

nature for both the models. Also the original results are supposed to be deviated from the theoretical data by a 

constant factor only.   

The paper is organized as follows. In section 2, a brief description of the existing discrete growth models with 

mathematical equation is given. Also the basic assumption and condition of the model is depicted here.  Section 3, 

describe the results that are obtained followed by its relevance with Cassie-Baxter equation of hydrophobic. Finally, 

in section 4, the conclusions are drawn from the numerical results described in previous sections.  

  

II. MODELING AND SIMULATION 

 

The roughness of a growing surface can be characterized in terms of w(t) which is defined as:  

w�L, t� =  	1L ��h�i, t� − H�t����
���    �1� 

Where L is the system size h(i,t) is the height of the i
th
 site at time t and H(t) is the mean height of the surface given 

by:   

H =  1L � h�i, t��
���   �2� 

The basic conditions of three different models are rather simple and schematically shown in Fig. 1. In all the 

three cases at any instant t we randomly choose a certain site i having h(i) and release a small particle. In case of 

RD the particle falls and sticks exactly to the position it was released upon thus increasing its height by one unit, In 

the second case i.e. in RDSR model the particle so chosen falls on the i
th
 site but can be relaxed to its nearest 

neighbour if the height of the neighbour is lesser. Thus In case of BD the randomly chosen particle can stick to the 

nearest neighbour site where it finds the height is the maximum. 
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Fig.1: Schematics, represents the basic definition of three kinds of 

growth processes 

Thus the basic difference between RD and the other two models is that in former case the surface does not have 

any correlation and thus w(t) ∞ t. Thus interface width can continuously increases with time. In the other two 

models as particles can be relaxed into the neighbouring sites or can choose a favourable position, a surface 

correlation grows and here w(t) cannot increase endlessly with time and saturation comes after a certain time tx 

called critical time.  

The scaling behaviour changes here in two time regime i.e. t <tx and t >tx. In two regimes the scaling relation 

takes the following form:  W�L, t�~ tβ�t ≪ t��                       �3�� w�� �L�~ Lα�t ≫ t��                      �3"� 

with             t� ~ L# $z = α

β
&          �3c�  

Here α, ß and z are respectively called the roughness, growth and dynamic exponent having specific values 

depending upon in which universality class the system belongs to. In case of RD model, as there is no correlation, 

the system has only one exponent ß. The above three relation can be summarized in a single expression runs as  w�L, t� ~ Lαf ) tL#*                �4� 

It is to be noted that though both RDSR and BD consider correlation the values of some exponents are different. 

The reason is that RDSR model falls into the linear universality class whereas the BD falls into the nonlinear KPZ 

class. The basic continuum growth equation for the two systems is respectively as follows:                                     ,-��, �, = G�h�x, t�� +  η�x, t�     �5� 

where G[h(x, t)] is the deterministic growth time and η is the noise term. ED class G is written as G[h(x, t)] = ν∇2
h 

following Edward-Wilkinson equation [10] whereas KPZ class introduced nonlinear term into G and wrote  

G[h(x, t)] = ν∇2
h+ (λ/2)∇h

2
.The first term on the right hand side describes the relaxation of the interface caused by 

a surface tension v, and the second term reflects the presence of lateral growth with the coefficient λ. 

In this work we have studied two competitive models for two different system sizes. In first process competition 

is made between RD and BD having assumption that if one process occurs with probability p then other would 

occur with that of (1-p). For second case same has been done with RD process being replaced by RDSR.  It is 

assumed that particle generator and surface were identical in size and thus no particle was wasted. The simulation 

was made running until saturation comes. It was also assumed that in each unit time the numbers of particles 

generated were exactly equal to the numbers of sites they were allowed to fall upon and thus the ratio of site 

numbers and particle numbers were always remained constant and equal to the time duration. 

III. RESULTS 

Fig.2 a and b show the log-log plots of w with t for two different system sizes L = 50, 400 and for different 

values of p when system follows RD-BD competitive model. Here p = 0 signifies the system follows pure RD 

models and corresponding log(w) - log(t) plot has been shown inset of Fig.2 b. It is seen from Fig.2 that in all the 

case (except for p = 0) log[w(t)] 1
st
 growing with times and after a certain crossover time it tends to get saturated. 
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This is general nature of this kind of surface evolution. The new thing that can be observed here is before saturation 

region the slope of the curves does not carry an unique value and so instead of one two distinct crossover region can 

be observed where the linear rise of log[w(t)] shows two distinct slopes.  

 
Fig.2: Log-Log variation of interface width with time for a system 

undergoing RD-BD models; (a) L = 50 and (b) L = 400; (Inset the same 

for p = 0). 

 

Table I summarizes the values of critical times and the slope of each parts as well as total slope of every linear 

plots corresponding to each L and p. It is seen that both the critical time tx1 and tx2 decreases as the system follows 

more and more ballistic model. The values of growth exponent also follows the same scaling law but the values of 

m not being matched with any existing reports suggesting some other scaling equation may be needed to describe 

the growth of system uniquely.     

 

Fig.3 shows variation of w with p for both the system size and it can be seen that w decreases with increasing p, 

at first rapidly and then with much slower rates. This is expected since the increase in p means the system more and 

more goes into ballistic nature and thus a new particle has enough probability to position it globally and thus the 

roughness gets saturate more easily with much lower values.  

 

A repetitive simulation has been done assuming that the system is going second competitive growth model 

between RDSR and BD. Fig.4, 5 and Table II shows corresponding results extracted out of the simulation. 

Fig.4 a and b shows the log-log plots of w with t for two different system sizes L = 50, 400 and for different 

values of p when system follows RDSR-BD competitive model and like the previous case p = 0 signifies the system 

follows pure RDSR models.  
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Fig.3: Variation of Wsat with p for the system 

undergoing RD-BD models 

Fig.4: Log-Log variation of interface width with 

time for a system undergoing RDSR-BD models; 

(a, b) L = 50 and (c, d) L = 400 

It is to be noted here that as summarized in Table II and also that can be seen from Fig.5 that unlike the 

previous case the saturation roughness values do not varies monotonically and it first shows a steep increase and 

then a decrease followed by subsequent saturation effect. 

 

Fig.5 shows it with more profound effect. The magnitude of the roughness is much lesser in case of second 

competitive models for all values of p and L. This is rather expected since in case of RD the surface never shows 

Table I: The values of critical times, slopes of different regions obtained from log-log plots of w with t 

and values log(Wsat) values for the system undergoing RD-BD model 

L = 50, T = 10
5
 

p Log10tx1 Log10tx2 m1 m2 m Log10 (Wsat) 

0.00 2.54 -------- 0.633 0.945 0.778 ------- 

0.01 1.953 3.766 0.603 0.917 0.752 2.844 

0.05 1.599 3.182 0.659 0689 0.669 2.108 

0.10 1.478 2.854 0.598 0.607 0.598 1.709 

0.40 0.737 1.672 0.757 0.356 0.544 0.889 

0.70 0.724 1.661 0.578 0.307 0.413 0.766 

1.00 0.554 1.283 0.663 0.386 0.497 0.673 

L = 400, T = 10
5
 

p Log10tx1 Log10tx2 m1 m2 m Log10 (Wsat) 

0.00 3.035 --------- 0.519 0.887 0.657 ------- 

0.01 2.768 4.533 0.511 1.246 0.762 3.071 

0.05 2.54 3.92 0.490 1.053 0.676 2.957 

0.10 2.46 3.814 0.461 0.938 0.612 2.589 

0.40 1.312 3.79 0.487 0.291 0.326 1.408 

0.70 1.077 3.644 0.451 0.239 0.286 1.222 

1.00 1.283 3.054 0.413 0.192 0.291 1.054 
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any saturation effect whereas both BD and RDSR techniques are associated with a saturation phenomenon. The 

values of both tx1 and tx2 both decreases with increasing value of p suggesting that ballistic nature helps the system 

to get saturated more rapidly. 

 

  
Fig.5: Variation of Wsat with p for the 

system undergoing RDSR -BD models (L = 

400) 

Fig.6: Variation of fractional porosity of the 

system undergoing RD-BD and RDSR-BD 

process (L = 400) 

 

Here also the scaling exponent, especially the value of growth exponent, does not totally match with any of the 

existing values (1/2 for RD or RDSR and 1/3 for BD). But still the considering the entire growth region β values 

tend to coincide with that expected from BD model.  

Porosity of the system has also been estimated from the simulation results. Here porosity (φ) has been defined as 

φ = Nv/Nt where Nv is the number of void site and Nt is total site, i.e. if Nf be the number of filled site then Nt = Nv 

+ Nf. It is to be noted that as except BD model other two models correspond to finding the site of lowest height by 

newly arriving particles there is no question of porosity for them and hence φ is associated with BD model only.  

Fig.6 shows the variation of fractional porosity for the system being grown with two competitive growth model 

with different values of p for L = 400. It can be seen that for all values of p except 0 and 1 the porosity of the RD-

BD system is much better than that associated with RDSR-BD models.   

At 0 and 1 values of p the value of φ coincides for two models which is very much expected since p = 0 signifies 

the system undergoes pure RD or RDSR model in which the concept of porosity does not come. When p = 1 the 

system comes to purely BD mode where the porosity should not depend upon the system size but the deposition 

process so the numerical values of φ comes out to be the same.  

Table II: The values of critical times, slopes of different regions obtained from log-log plots of w with t 

and values log(Wsat) values for the system undergoing RD-BD model 

L = 50, T = 10
5
 

p Log10tx1 Log10tx2 m1 m2 m Log10 (Wsat) 

0.00 1.149 3.705 0.275 0.219 0.231 0.642 

0.01 1.132 3.814 0.275 0.227 0.237 0.68 

0.05 0.782 4.277 0.257 0.266 0.261 0.834 

0.10 0.846 3.827 0.276 0.334 0.313 0.981 

0.40 0.968 2.658 0.211 0.443 0.366 0.886 

0.70 0.529 1.433 0.614 0.348 0.455 0.662 

1.00 0.481 1.223 0.663 0.386 0.497 0.664 

L = 400, T = 10
5
 

p Log10tx1 Log10tx2 m1 m2 m Log10 (Wsat) 

0.00 2.111 4.289 0.274 0.419 0.349 1.365 

0.01 2.525 4.386 0.288 0.488 0.373 1.574 
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ity plays an important role in determining the hydrophobic nature of the surface and quantitative determination of 

the water contact angle. On a hydrophobic surface, water has a very large contact angle and also it can roll off very 

easily i.e. it shows very low hysteresis (for systems in Cassie equilibrium state) [11]. Here a drop sits on the top of 

the asperities of the surface and water cannot penetrate into the gap. There is another kind of system called Wenzel 

state [11] where in spite of large contact angle the system shows a large hysteresis i.e. the water doesn’t roll off 

easily. Here water can penetrate into the cavity. Fig.7 a, explains the both the equilibrium conditions schematically. 

The equations that describes the Cassie state runs as  

Cos(θ) = σCos(θ1) +(1-σ)Cos(θ2)  (6a) 

It is to be noted that Wenzel state is rare to observe in real world as it requires a perfect homogeneous system 

which is not expected in case of a competitive growth model. Thus we have taken equation 6a to describe the 

system. We assume the substrate to be cleaned silicon on whom when smooth carbon film is deposited the value of 

θ1 comes out to be ~ 40
o
.   Now as stated earlier σ = (top pillar surface)/(projected surface) that should vary 

inversely with Wsat and thus σ∝ 1/ Wsat. Again for our substrates “σ” can be expressed with geometrical 

parameters:   

σ = (A/p
2
) × S   (7) 

where S is the pillar surface and A: geometrical disposition factor giving the number of pillars per area, for square 

disposition A = 4 × ¼ = 1 and for linear deposition  A = 2 × ½  

where θ is the contact angle (experimentally measured), θ1 is the contact angle of water on a flat surface of the 

material under investigation and θ2 = 180
o
 is the contact angle of water on air. σis the solid fraction of surface area 

at the top of the asperities and henceφ =(1- σ) would represent the surface porosity. 

For a ridges of height h, width d and periodicity P, the expression for σ would be σ = d/P (Fig.7 b). For the 

Wenzel state the equilibrium equation is rather simple and just runs as  

                  Cos(θ) = ηCos(θ1)      (6b) 

Here η is the ratio between real surface areas to projected surface area.  

It is to be noted that Wenzel state is rare to observe in real world as it requires a perfect homogeneous system which 

is not expected in case of a competitive growth model. 

Thus we have taken equation 6a to describe the system. 

In our case we have assumed a cubic particle of unit dimension is being deposited thus in our case P = S = A = h = 

1. This immediately gives P = a×(Wsat)
0.5 

, where a is proportionality constant. Generally it is found from any 

calibrated data in order to have the exact inter-columnar distance but for this time being we take a, to be unity in 

order to find the variation of inter-columnar distance with fractional position of BD to take place. The variations for 

both the models with both the system sizes have been shown in Fig.8. It has been seen that the variation as expected 

varies with p, in the same manner as that of Wsat for both the competitive models and for both the system sizes. This 

also helps in determining quantitative values of contact angle. The variation has been shown in Fig.9. It has been 

seen that in case of model 1 i.e. RD-BD model with increasing p the water contact angle reduces from ~ 176 to ~ 

126 
o
 whereas for RDSR-BD model it does not follow any monotonic pattern but stays within the value ~157 – 128 

o
. The first conclusion that can be drawn from here is that in each case the increasing value of p seems less favours 

the hydrophobicity of the system which means that roughness of the system plays the key role to determine the 

hydrophobic nature in the Cassie state. The results show that the water contact angle for a specific system depends 

on the system size, which is somewhat unusual for real systems. This may be due to the fact that the water contact 

angle not only solely depends upon the roughness of the surface but highly sensitive to the surface chemistry also. 

So decrease of system size may change the surface chemistry in such a way that overall effect towards the water 

repellency of the surface remains constant. This has to be investigated further. The greater water contact angle of 

0.05 2.342 4.367 0.277 0.701 0.444 1.955 

0.10 2.379 4.094 0.282 0.863 0.496 1.933 

0.40 2.391 3.212 0.331 1.102 0.481 1.722 

0.70 1.004 3.341 0.457 0.276 0.312 1.132 

1.00 1.004 2.573 0.429 0.236 0.318 1.02 
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water droplet on the surface grown under RD-BD model than RDSR-BD can again be explained in terms of the 

enhanced roughness of the 1
st
 system as in case of RD model the roughness can vary indefinitely thus giving better 

hydrophobicity of the corresponding system. 

 
 

Fig.7: (a) Schematic, showing Wenzel state and 

Cassie equilibrium state 

Fig.7: (b) Schematic of the substrate showing the 

inter-Columnar distance 

 

 

  
Fig.8: Variation ofinter-columnar distance with 

fractional values of p for both the models and both the 

values of L  

Fig.9: Variation water contact angle with fractional 

values of p for both the models and both the values of 

L 

 

I. CONCLUSIONS 

This work reports a comparative simulation study of time evolution of a rough surface generated by two 

different competitive growth mechanism namely random deposition-ballistic deposition, and random deposition 

with surface relaxation and ballistic deposition model. It has been found that the growth cannot be described by any 

existing scaling relation uniquely thus losing its universality. There exists in case of both the models three distinct 

growth regime separated by two critical time. Three regimes behave differently being described by different scaling 

relation. The saturation roughness has been found to be decreased with increasing ballistic nature in case of RD-BD 

model whereas it does not follow any definite nature in case of other model. Porosity as well as inter-columnar 

distance has been calculated based on simple assumption. The water contact angle has also been quantitatively 

calculated here from and it has been seen that water contact angle decrease with increasing ballistic nature of the 

deposition. The variation of water contact angle with surface roughness has been quantitatively verified in case of 

Cassie state. This systematic study would definitely help the researchers to draw a relation between deposition 

process and water repellent behaviour of the system. 
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